The detrimental effect of orotic acid substitution in the peptide nucleic acid strand on the stability of PNA2:NA triple helices

Author:

Hudson Robert HE,Wojciechowski Filip

Abstract

We have investigated the incorporation of C6 derivatives of uracil into polypyrimidine peptide nucleic acid oligomers. Starting with uracil-6-carboxylic acid (orotic acid), a peptide nucleic acid monomer compatible with Fmoc-based synthesis was prepared. This monomer then served as a convertible nucleobase whereupon treatment of the resin-bound methyl orotate containing hexamers with hydroxide or amines cleanly converted the ester to an orotic acid or orotamide-containing peptide nucleic acid. Peptide nucleic acid hexamers containing the C6-modified nucleobase hybridized to both poly(riboadenylic acid) and poly(deoxyriboadenylic acid) via triplex formation. Complexes formed with poly(riboadenylic acid) were more stable than those formed with poly(dexoyriboadenylic acid), as measured by temperature-dependent UV spectroscopy. However, both of these complexes were destabilized relative to the complexes formed by an unmodified peptide nucleic acid oligomers. Internal or doubly substituted hexamers are destabilized more strongly than a terminally substituted one, and the type of substitution (carboxamide, ester, carboxylic acid) affects the overall triplex stability. These results clearly show that incorporation of a C6-substituted uracil into polypyrimidine PNA is detrimental to triplex formation. We have also extended this chemistry to incorporate uracil-5-methylcarboxylate into a peptide nucleic acid hexamer. After on-resin conversion of the C5 ester to the 3-(N,N-dimethylamino)propylamide, significant stabilization of the triplex formed with poly(riboadenylic acid) was observed, which illustrates the compatibility of C5 substitution with peptide nucleic acid directed triple helix formation. Key words: peptide nucleic acid, triple helix, orotic acid, orotamide, PNA.

Publisher

Canadian Science Publishing

Subject

Organic Chemistry,General Chemistry,Catalysis

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3