Affiliation:
1. Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, NS B3H 1X5 Canada.
2. Department of Chemistry, Dalhousie University, Halifax, NS B3H 1X5 Canada.
Abstract
Biomolecular nuclear magnetic resonance (NMR) spin relaxation experiments provide exquisite information on the picosecond to nanosecond timescale motions of bond vectors. Spin–lattice (T1) and spin–spin (T2) relaxation times and the steady-state nuclear Overhauser effect (NOE) are the first set of parameters extracted from typical 15N or 13C NMR relaxation experiments. Therefore, verifying that T1, T2, and NOE are consistent with theoretical predictions is an important step before carrying out the more detailed model-free and reduced spectral density mapping analyses commonly employed. In this mini-review, we discuss the essential motional parameters used to describe biomolecular dynamics in the context of a variety of examples of folded and intrinsically disordered proteins and peptides in aqueous and membrane mimetic environments. Estimates of these parameters can be used as input for an online interface, introduced herein, allowing plotting of trends of T1, T2, and NOE with magnetic field strength. The plots may serve as a first-check to the spectroscopist preparing to embark on a detailed NMR relaxation analysis.
Publisher
Canadian Science Publishing
Subject
Cell Biology,Molecular Biology,Biochemistry
Cited by
18 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献