Foliar uptake of 15N from simulated cloud water by red spruce (Picearubens) seedlings

Author:

Bowden Richard D.,Geballe Gordon T.,Bowden William B.

Abstract

One hypothesis to explain dieback of red spruce (Picearubens Sarg.) trees in high-elevation red spruce stands is that atmospheric deposition may introduce nitrogen in excess of plant needs (N saturation), which may disrupt normal metabolism and foliage development in this harsh environment. Some authors suggest that direct foliar uptake of N might contribute to N saturation. To examine the importance of foliar uptake by red spruce, we exposed seedlings in a greenhouse to a mist that simulated cloud water and contained either ammonium or nitrate as 15N (99 at.% excess at 2 mg/L). After 50 h exposure to mist, seedlings were washed and then separated into four tissue types: new foliage, old needles, stems, and roots. Total and isotopic nitrogen contents were determined for each tissue type. The accumulation rate of 15N in each tissue type was very low. Extrapolating our data on the basis of a year suggests that N from cloud water supplies only a small fraction of the N required for new growth (less than 1.5% for the seedlings we used). We observed that both ammonium-15N and nitrate-15N accumulated in stem tissues and could not be removed after repeated washings, which suggests an alternative mechanism for long-term N retention by red spruce stands.

Publisher

Canadian Science Publishing

Subject

Ecology,Forestry,Global and Planetary Change

Cited by 61 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3