Linking climate, gross primary productivity, and site index across forests of the western United States

Author:

Weiskittel Aaron R.1,Crookston Nicholas L.2,Radtke Philip J.3

Affiliation:

1. School of Forest Resources, University of Maine, Orono, ME 04469, USA.

2. Rocky Mountain Research Station, US Forest Service, Moscow, ID 83843, USA.

3. College of Natural Resources and Environment, Virginia Tech, Blacksburg, VA 24060, USA.

Abstract

Assessing forest productivity is important for developing effective management regimes and predicting future growth. Despite some important limitations, the most common means for quantifying forest stand-level potential productivity is site index (SI). Another measure of productivity is gross primary production (GPP). In this paper, SI is compared with GPP estimates obtained from 3-PG and NASA’s MODIS satellite. Models were constructed that predict SI and both measures of GPP from climate variables. Results indicated that a nonparametric model with two climate-related predictor variables explained over 68% and 76% of the variation in SI and GPP, respectively. The relationship between GPP and SI was limited (R2 of 36%–56%), while the relationship between GPP and climate (R2 of 76%–91%) was stronger than the one between SI and climate (R2 of 68%–78%). The developed SI model was used to predict SI under varying expected climate change scenarios. The predominant trend was an increase of 0–5 m in SI, with some sites experiencing reductions of up to 10 m. The developed model can predict SI across a broad geographic scale and into the future, which statistical growth models can use to represent the expected effects of climate change more effectively.

Publisher

Canadian Science Publishing

Subject

Ecology,Forestry,Global and Planetary Change

Cited by 95 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3