Experimental backwater analysis around bridge waterways

Author:

Seckin Galip,Atabay Serter

Abstract

A series of five experiments was performed in a two-stage compound channel including various roughness conditions and different types of bridge models, namely, single-opening semi-circular arch bridge model (ASOSC), multiple-opening semi-circular arch bridge model (AMOSC), single-opening elliptic arch bridge model (ASOE), and single-opening straight-deck bridge model with and without piers (DECK) including different span widths. The performances of six different methods for computing backwater around bridge waterways were compared using the experimental data carefully taken on many combinations of cases. The results of the energy method, momentum method, WSPRO method, Yarnell's method, USBPR method, and arch bridge method were compared with experimental results. The results showed that energy method was able to simulate more accurately the measured backwater values than the other methods. The backwater differences between the experimental values and computed values by the energy method are generally within –3.2% and 0.8% in terms of flow depth. A simple generalized function for estimating bridge backwater is also proposed.Key words: bridge backwater, hydraulic model testing, flood control, compound channel flow, one-dimensional methods.

Publisher

Canadian Science Publishing

Subject

General Environmental Science,Civil and Structural Engineering

Cited by 28 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3