Protracted continental collision — evidence from the Grenville OrogenThis article is one of a series of papers published in this Special Issue on the theme Lithoprobe — parameters, processes, and the evolution of a continent.

Author:

Hynes Andrew12,Rivers Toby12

Affiliation:

1. Department of Earth & Planetary Sciences, McGill University, 3450 University St, Montreal, QC H3A 2A7, Canada.

2. Toby Rivers, Department of Earth Sciences, Memorial University of Newfoundland, St. John’s, NF A1B 3X5, Canada.

Abstract

The Grenville Orogen in North America is interpreted to have resulted from collision between Laurentia and another continent, probably Amazonia, at ca. 1100 Ma. The exposed segment of the orogen was derived largely from reworked Archean to Paleoproterozoic Laurentian crust, products of a long-lived Mesoproterozoic continental-margin arc and associated back arc, and remnants of one or more accreted mid-Mesoproterozoic island-arc terranes. A potential suture, preserved in Grenvillian inliers of the southeastern USA, may separate rocks of Laurentian and Amazonian affinities. The Grenvillian Orogeny lasted more than 100 million years. Much of the interior Grenville Province, with peak metamorphism at ca. 1090–1020 Ma, consists of uppermost amphibolite- to granulite-facies rocks metamorphosed at depths of ca. 30 km, but areas of lower crustal, eclogite-facies nappes metamorphosed at 50–60 km depth also occur and an orogenic lid that largely escaped Grenvillian metamorphism is preserved locally. Overall, deformation and regional metamorphism migrated sequentially to the northwest into the Laurentian craton, with the youngest contractional structures in the northwestern part of the orogen at ca. 1000–980 Ma. The North American lithospheric root extends across part of the Grenville Orogen, where it may have been produced by depletion of sub-continental lithospheric mantle beneath the long-lived Laurentian-margin Mesoproterozoic subduction zone. Both the Grenville Orogen and the Himalaya–Tibet Orogen have northern margins characterized by long-lived subduction before continental collision and protracted convergence following collision. Both exhibit cratonward-propagating thrusting. In the Himalaya–Tibet Orogen, however, the pre-collisional Eurasian-margin arc is high in the structural stack, whereas in the Grenville Orogen, the pre-collisional continental-margin arc is low in the structural stack. We interpret this difference as due to subduction reversal in the Grenville case shortly before collision, so that the continental-margin arc became the lower plate during the ensuing orogeny. The structurally low position of the warm, extended Laurentian crust probably contributed significantly to the ductility of lower and mid-crustal Grenvillian rocks.

Publisher

Canadian Science Publishing

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3