Author:
Murphy J. Brad,Hammer Mark F.
Abstract
Following pine seed germination, lipids in the megagametophyte are converted to sucrose, which is transported to the emerging seedling to support its growth. In several conifer species, an increase in the seedling starch content following germination has been reported. To further characterize this phenomenon, starch accumulation and localization, starch synthase (EC 2.4.1.21) activity (both soluble and granule-bound), and partitioning of exogenous 14C-sucrose were determined following germination of pinyon (Pinusedulis Engelm.) seeds. Starch was a minor component in dry embryos, accounting for only 3% of the dry weight. Starch levels increased 22-fold and 15-fold in the cotyledons and hypocotyl, respectively, by 8 days after germination. Starch accumulated to 65% of the dry weight in the cotyledons and 46% in the hypocotyl. The root and epicotyl accumulated relatively low levels of starch, only about 7%. Starch was localized primarily in the cortex and pith of the hypocotyl, the cortex of the cotyledons, and the root cap. Only granule-bound starch synthase showed a significant increase in activity during germination, and its changes more closely followed the pattern of starch accumulation. Exogenous 14C-sucrose was partitioned primarily into starch. After a 24-h labeling period, starch in both the cotyledons and hypocotyl accounted for 38% of total label (61% of the incorporated label) in these organs. In the roots, starch accounted for only 2.5 and 14%, respectively, of the total and incorporated label. The spatial and temporal pattern of starch accumulation closely paralleled previously reported patterns for the activity of sucrose synthase, which is apparently associated with the sucrose–starch conversion. Starch accumulation in the seedling accounts for approximately 50% of the sucrose transported from the megagametophyte following pinyon seed germination. Thus, starch appears to serve as an important transitory carbon pool for the growing seedling and may serve additional functions during seedling development.
Publisher
Canadian Science Publishing
Subject
Ecology,Forestry,Global and Planetary Change
Cited by
14 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献