Modulation by arginine vasopressin of glutamate excitation in the ventral septal area of the rat brain

Author:

Disturnal J. E.,Veale W. L.,Pittman Q. J.

Abstract

Arginine vasopresin is hypothesized to act as a neurotransmitter or neuromodulator in the ventral septal area of the rat brain. To examine this role of vasopressin further, it was applied by microiontophoresis or micropressure from multiple-barrelled micropipettes onto spontaneously active or glutamate-activated neurons. Applied in this manner, vasopressin reduced glutamate-evoked excitation in 32 of the 47 cells studied. Further, micropressure application of the vasopressin antagonist d(CH2)5Tyr(Me)AVP reversed the vasopressin effects. In contrast, administration of vasopressin had no effect on excitations evoked by acetylcholine iontophoresis or on the spontaneous activity of the majority of the ventral septal neurons studied. These observations suggest that vasopressin may be acting on a V1-like receptor on specific neurons in the ventral septal area as a modulator of glutamate actions. Evoked responses were also obtained in the same population of ventral septal cells following stimulation of a variety of limbic areas. Inhibitory input onto most of the vasopressin responsive neurons studied was obtained following electrical stimulation of the paraventricular nucleus and bed nucleus of the stria terminalis, two cell groupings that are potential sources of vasopressin to the ventral septal area. Thus, the similarity in action of exogenously applied vasopressin and the evoked responses following paraventricular nucleus and bed nucleus stimulation suggests that vasopressin may be a neurotransmitter in this pathway.

Publisher

Canadian Science Publishing

Subject

Physiology (medical),Pharmacology,General Medicine,Physiology

Cited by 35 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Arginine Vasopressin, Synaptic Plasticity, and Brain Networks;Current Neuropharmacology;2022-12

2. Dynamic limbic networks and social diversity in vertebrates: From neural context to neuromodulatory patterning;Frontiers in Neuroendocrinology;2009-10

3. Nonapeptides and the evolutionary patterning of sociality;Advances in Vasopressin and Oxytocin — From Genes to Behaviour to Disease;2008

4. Sex Differences in Neurotransmitters Systems; Vasopressin as an Example;Handbook of Neurochemistry and Molecular Neurobiology;2007

5. Endogenous antipyretics;Clinica Chimica Acta;2006-09

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3