Nutrient management in a Pinusradiata plantation after thinning: the effect of thinning and residues on nutrient distribution, mineral nitrogen fluxes, and extractable phosphorus

Author:

Carlyle J. Clive

Abstract

The effects of thinning and residues on nutrient distribution, N fluxes, and extractable P were studied for 3 years after the first thinning of a 10-year-old Pinusradiata D. Don plantation. Treatments were (i) unthinned, (ii) thinned to 52% of basal area with all residues removed (zero residue; ZR), (iii) thinned with all residues retained and spread uniformly (normal residue; NR), and (iv) thinned with all residues retained plus the addition of those removed from the ZR treatment, approximately doubling the amount of residue in treatment NR (high residue; HR). The total nutrient contents of trees (above ground), residues, forest floor, and the top 0.30 m of mineral soil were 1206 kg N•ha−1, 126 kg P•ha−1, 828 kg K•ha−1, and 1272 kg Ca•ha−1 after thinning. Residues contained 11, 10, 10, and 7% of site N, P, K, and Ca, respectively. Thinning without residue retention (unthinned cf. ZR) elevated mean monthly maximum soil temperatures at a depth of 50 mm by up to 5.3 °C in summer and 1 °C in winter. Thinning had no effect on forest floor or mineral soil (0–0.30 m) moisture content. In the unthinned treatment an average of 25 kg N•ha−1•year−1 was mineralized, all of which was taken up by the trees, and there was no leaching. Thinning caused a 10% increase in rates of N mineralization and uptake and a small transient increase in soil mineral N concentrations, but had no effect on leaching. Maintenance of prethinning levels of N uptake by the remaining trees (after a 48% reduction in basal area) suggests that uptake per tree was approximately doubled. Maintenance of N uptake after thinning was consistent with maintenance of basal area growth (m2•ha−1) and an increase in foliar N concentrations. Thinning had no effect on extractable P in the forest floor or mineral soil. The retention of residues (NR and HR) decreased mean monthly maximum and elevated mean monthly minimum soil temperatures relative to the ZR treatment, and the effect increased with the amount of residue. Forest floor moisture content increased with the amount of residue, but residue retention had no effect on mineral soil moisture. Rates of mineralization were higher in the presence of residue and annual averages were 28, 33, and 42 kg N•ha−1•year−1 for ZR, NR, and HR treatments, respectively. Despite increased N mineralization in the presence of residue there was no leaching and all the additional N was taken up by the trees. Basal area increment increased in the presence of residue (P = 0.235) and was 10.7 (ZR), 11.1 (NR), and 11.8 (HR) m2•ha−1 over 4 years of measurement.

Publisher

Canadian Science Publishing

Subject

Ecology,Forestry,Global and Planetary Change

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3