Robust flight performance of bumble bees with artificially induced wing wear

Author:

Haas C. A.1,Cartar R. V.1

Affiliation:

1. Department of Biological Sciences, University of Lethbridge, Lethbridge, AB T1K 3M4, Canada.

Abstract

We lack a mechanism that links wing wear with mortality in foraging social insects. This study tests the hypothesis that wing wear strongly degrades foraging flight performance, thereby providing a biomechanical explanation for the wing wear – mortality relationship. We examine the effect of simulated wing wear — wing area reduction and asymmetry — on the flight behaviour of bumble bee ( Bombus flavifrons Cresson, 1863) workers moving between vertically oriented flowers spaced 30 cm apart and arranged in a two-dimensional horizontal grid. Flight behaviour was measured in three dimensions as total flying distance, mean velocity, variability of velocity, maximum acceleration, maximum deceleration, percentage of time spent accelerating, and displacement from a straight line path between flowers. Loss of wing area had surprisingly little effect on flight behaviour. Viewed multivariately, bees with low asymmetry and low loss of mean area, or with high asymmetry and high loss of mean area, differed from the other three treatment groups. When bees were burdened with both high asymmetry and high loss of wing area, their between-flower flight path was less direct. Overall, flight behaviour of bumble bees was highly resilient to major changes in wing area and asymmetry in this simple foraging environment. The wing wear-associated causes of increased mortality remain elusive.

Publisher

Canadian Science Publishing

Subject

Animal Science and Zoology,Ecology, Evolution, Behavior and Systematics

Cited by 32 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3