Ability of the Ca2+ -selective microelectrodes to measure fast and local Ca2+ transients in nerve cells

Author:

Levy Simon,Tillotson Douglas

Abstract

The ability of the Ca2+-selective microelectrode to measure fast Ca2+ transients intracellularly is reviewed. In vitro, Ca microelectrodes can respond to Ca2+ injections with time to peaks as small as 40 ms. We present methods to improve the dynamic response of Ca microelectrodes and to make Ca-buffered solutions in high ionic strength. Examples of measurements of intracellular free Ca2+ ([Ca2+]i) transients in Aplysia neurons and in Limulus photoreceptors are shown. To show the validity of those measurements, simultaneous recordings of the Arsenazo III (AIII) absorbance and of the Ca-selective electrode potential were made in voltage-clamped neurons of the abdominal ganglion of Aplysia californica. Pressure injection of AIII to a concentration of 300–500 μM induced a rise in resting [Ca2+]i; injection of higher [AIII] led to buffering of [Ca2+]i transients. Both techniques responded to changes in resting [Ca2+]i in the same direction except that AIII showed an increase in absorbance in 0 [Ca2+]o. Voltage-clamp pulses transiently increased both the AIII absorbance and the Ca2+ electrode potential. Reducing or increasing the driving force for Ca2+ entry changed the magnitude of both signals in the right direction. Examples of spatial localization of [Ca2+]i increases and Ca2+ gradients within the cytoplasm were demonstrated using the Ca electrode. The use of optical techniques to measure local [Ca2+]i changes is briefly reviewed.

Publisher

Canadian Science Publishing

Subject

Physiology (medical),Pharmacology,General Medicine,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3