Affiliation:
1. Room 414 BSB, School of Biological Sciences, University of Missouri-Kansas City, 5100 Rockhill Road, Kansas City, MO 64110-2499, USA.
Abstract
Histone H3 proteins are highly conserved across all eukaryotes and are dynamically modified by many post-translational modifications (PTMs). Here we describe a method that defines the evolution of the family of histone H3 proteins, including the emergence of functionally distinct variants. It combines information from histone H3 protein sequences in eukaryotic species with the evolution of these species as described by the tree of life (TOL) project. This so-called TOL analysis identified the time when the few observed protein sequence changes occurred and when distinct, co-existing H3 protein variants arose. Four distinct ancient duplication events were identified where replication-coupled (RC) H3 variants diverged from replication-independent (RI) forms, like histone H3.3 in animals. These independent events occurred in ancestral lineages leading to the clades of metazoa, viridiplantae, basidiomycota, and alveolata. The proto-H3 sequence in the last eukaryotic common ancestor (LECA) was expanded to at least 133 of its 135 residues. Extreme conservation of known acetylation and methylation sites of lysines and arginines predicts that these PTMs will exist across the eukaryotic crown phyla and in protists with canonical chromatin structures. Less complete conservation was found for most serine and threonine phosphorylation sites. This study demonstrates that TOL analysis can determine the evolution of slowly evolving proteins in sequence-saturated datasets.
Publisher
Canadian Science Publishing
Subject
Cell Biology,Molecular Biology,Biochemistry
Cited by
56 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献