Forest fire history of Desolation Peak, Washington

Author:

Agee James K.,Finney Mark,Gouvenain Roland De

Abstract

Forests in the vicinity of Desolation Peak, Washington, are of special ecological interest because of their transitional nature between coastal and interior forest types. The area is west of the Cascade Mountain crest but in the rainshadow of mountains farther to the west. Fire return intervals were hypothesized to be shorter than typical for coastal forest types, such as those dominated by western hemlock and Pacific silver fir, and longer than typical for interior forest types, such as ponderosa pine, owing to the close juxtaposition of these types at Desolation Peak. Seven forest community types were defined, and a 400-year fire history was developed for this 3500-ha area. The average natural fire rotation was 100 years; this varied by a factor of two by century and by topographic aspect. Forest types typical of coastal regions, such as Douglas-fir, – western hemlock and mountain hemlock – Pacific silver fir, had mean fire return intervals (108–137 years) much lower than in other western Washington areas. The most interior forest type, ponderosa pine – Douglas-fir, had a higher mean fire return interval (52 years) than reported for similar forest types east of the Cascades. Historically, fire has created structural and landscape diversity on Desolation Peak and may be an important process in the maintenance of such diversity into the future.

Publisher

Canadian Science Publishing

Subject

Ecology,Forestry,Global and Planetary Change

Cited by 49 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Probabilistic Wildfire Segmentation Using Supervised Deep Generative Model from Satellite Imagery;Remote Sensing;2023-05-24

2. Quantum-Compatible Variational Segmentation for Image-to-Image Wildfire Detection Using Satellite Data;IGARSS 2022 - 2022 IEEE International Geoscience and Remote Sensing Symposium;2022-07-17

3. Warming enabled upslope advance in western US forest fires;Proceedings of the National Academy of Sciences;2021-05-24

4. Fire Ecology and Management in Pacific Northwest Forests;Fire Ecology and Management: Past, Present, and Future of US Forested Ecosystems;2021

5. Simulated Indigenous fire stewardship increases the population growth rate of an understorey herb;Journal of Ecology;2020-11-29

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3