Author:
Allen Tom W,Quayyum Habib A,Burpee Leon L,Buck James W
Abstract
The effect of mechanical wounding or foliar diseases caused by Sclerotinia homoeocarpa or Rhizoctonia solani on the epiphytic yeast communities on creeping bentgrass and tall fescue were determined by leaf washing and dilution plating. Total yeast communities on healthy bentgrass and tall fescue leaves ranged from 7.9 × 103 to 1.4 × 105 CFU·cm–2 and from 2.4 × 103 to 1.6 × 104 CFU·cm–2, respectively. Mechanically wounded leaves (1 of 2 trials) and leaves with disease lesions (11 of 12 trials) supported significantly larger communities of phylloplane yeasts. Total yeast communities on S. homoeocarpa infected or R. solani infected bentgrass leaves were 3.6–10.2 times and 6.2–6.4 times larger, respectively, than the communities on healthy leaves. In general, healthy and diseased bentgrass leaves supported larger yeast communities than healthy or diseased tall fescue leaves. We categorized the majority of yeasts as white-pigmented species, including Cryptococcus laurentii, Cryptococcus flavus, Pseudozyma antarctica, Pseudozyma aphidis, and Pseudozyma parantarctica. The percentage of pink yeasts in the total yeast community ranged from 2.6% to 9.9% on healthy leaves and increased to 32.0%–44.7% on S. homoeocarpa infected leaves. Pink-pigmented yeasts included Rhodotorula glutinis, Rhodotorula mucilaginosa, Sakaguchia dacryoidea, and Sporidiobolus pararoseus. Foliar disease significantly affected community size and composition of epiphytic yeasts on bentgrass and tall fescue.Key words: dollar spot, phylloplane, Rhizoctonia blight.
Publisher
Canadian Science Publishing
Subject
Genetics,Molecular Biology,Applied Microbiology and Biotechnology,General Medicine,Immunology,Microbiology
Cited by
30 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献