cis-Cytokinins that predominate inPisum sativumduring early embryogenesis will accelerate embryo growth in vitro

Author:

Quesnelle Pauline E.1,Emery R.J. Neil1

Affiliation:

1. Biology Department, Trent University, Peterborough, ON K9J 7B8, Canada.

Abstract

Correlative data from monocots suggest that cytokinin (CK) regulates seed development. The involvement of CKs in seed growth was investigated using pea, a eudicot with an unknown CK profile, as a model system. CK profiles were measured by liquid chromatography – tandem mass spectrometry against major stages of embryogenesis, which were documented histologically. Like other grain legumes, CK levels of developing pea seeds fluctuated through development and had mainly nucleotide and riboside forms. Among the 11 CKs detected, cis-isomers (cis-[9R]Z (zeatin riboside), and cis-[9RMP]Z (zeatin riboside 5′ monophosphate)), along with their isopentenyl precursors, were the major forms during pea embryogenesis, whereas corresponding trans-isomers appeared as minor constituents. Highest CK concentrations occurred at the heart-shape stage, when there are high rates of cell division and sugar metabolism. To assess the significance of high CK concentrations observed at the heart-shape stage, a bioassay was developed wherein heart-shaped embryos were excised and cultured on medium containing either cis-[9R]Z, trans-[9R]Z, or kinetin. Growth of cultured heart-shaped embryo explants was significantly augmented by all exogenous CKs relative to controls that were not supplemented with CK. Moreover, at concentrations equivalent to those experienced by an embryo in vivo, cis-[9R]Z was active in enhancing the growth of cultured pea embryos to an extent equal to that of trans-[9R]Z. Overall, the results endorse a growth-promoting role for cis-CKs during seed development.

Publisher

Canadian Science Publishing

Subject

Plant Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3