A laboratory study of frazil evolution in a counter-rotating flume

Author:

Ye Shi Qiang,Doering Jay,Shen Hung Tao

Abstract

A series of experiments was carried out using a counter-rotating flume that is housed in a computer-controlled cold room. A digital image process system (DIPS) was used to observe frazil ice processes. In particular, the effects of air temperature and flow velocity on the supercooling and frazil ice processes were examined. The super cooling process was found to be strongly related to air temperature and water depth, but only weakly related to water velocity. The water velocity has a strong influence on frazil evolution, frazil size, and number of the particles, however. The measured frazil size distribution by volume was found to be reasonably well approximated by a log-normal distribution. Frazil growth continues in number and size during supercooling and appears to reach a stable state at the end of the principal period of supercooling. All characteristic parameters of the supercooling processes and frazil size distribution were found to be related to the Reynolds number, an index of the intensity of flow turbulence. This information can be used in the development of models of frazil ice dynamics.Key words: supercooling, frazil ice, distribution, flow velocity, air temperature, turbulence.

Publisher

Canadian Science Publishing

Subject

General Environmental Science,Civil and Structural Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3