Abstract
The Debye–Waller factor has been calculated as a function of temperature for the four hexagonal close-packed (hcp) metals cobalt, ruthenium, erbium, and scandium, using a lattice-dynamical model to evaluate the normal mode frequencies and eigenvectors in the harmonic approximation. The calculation of the anisotropic temperature factors for these metals requires a knowledge of the eigenvectors for the various normal modes of vibration. The frequency distribution function is also used to calculate the mean-square amplitude of displacement of the atoms, in the cubic approximation. The first and second negative moments of the distribution function are used to calculate the low- and high-temperature limits of [Formula: see text], respectively. The value of the Lindemann parameter obtained from the present calculations is consistent with the value quoted by Gschneidner.
Publisher
Canadian Science Publishing
Subject
General Physics and Astronomy
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献