Novel “omega muscle units” in superficial body-wall myotomes during metamorphosis in the northern brook lamprey (Ichthyomyzon fossor)

Author:

Anderson J.E.11,Cunha A.1,Docker M.F.11

Affiliation:

1. Department of Biological Sciences, Faculty of Science, University of Manitoba, 50 Sifton Road, Winnipeg, MB R3T 2N2, Canada.

Abstract

Lampreys transform from sedentary filter feeders to more mobile adults through a dramatic metamorphosis that includes remodeling of head muscle and skeletal systems. Metamorphic modifications of body-wall myotomes that could support changes in swimming behavior from larvae to adults have not been previously reported. Thus, transverse sections of northern brook lamprey (Ichthyomyzon fossor Reighard and Cummins, 1916) in larval (n = 4), metamorphosing (n = 3), and adult (n = 2) stages were used to investigate the architecture of body-wall muscle and to detect whether Pax7 and MyoD, proteins important in myogenesis, were co-localized in any muscle nuclei. In addition to myotomal complexity of muscle units composed of parietal and central fibers, there was a novel pattern of omega-shaped muscle units with curves of muscle fibers in the superficial mid-body myotome in metamorphosing lamprey. Small satellite-like cells were identified on central fibers in metamorphosing and adult lamprey muscle using routine histology and immunolocalization of Pax7 and MyoD with antibodies that specifically detect mammalian and teleost proteins. Transient “omega muscle units” may be a marker for impending myotomal growth and increasing swimming efficiency during maturation, possibly restricted to metamorphosis. Finding satellite-like cells suggests that Pax7 and MyoD may have distinctive roles in lamprey myogenesis.

Publisher

Canadian Science Publishing

Subject

Animal Science and Zoology,Ecology, Evolution, Behavior and Systematics

Reference45 articles.

1. The satellite cell as a companion in skeletal muscle plasticity:currency, conveyance, clue, connector and colander

2. Nitric oxide treatment attenuates muscle atrophy during hind limb suspension in mice

3. A rapid startle response in larval lampreys

4. Dawson, H.A., Quintella, B.R., Almeida, P.R., Treble, A.J., and Jolley, J.C. 2015. The ecology of larval and metamorphosing lampreys. In Lampreys: biology, conservation and control. Vol. 1. Edited by M.F. Docker. Springer, Dordrecht, the Netherlands. pp. 75–137.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3