Isotopic niche of the American pika (Ochotona princeps) through space and time

Author:

Westover M.L.1,Lizewski K.A.1,Klingler K.B.2,Smith F.A.1

Affiliation:

1. University of New Mexico, Department of Biology, MSC03-2020, 219 Yale Boulevard Northeast, Albuquerque, NM 87131, USA.

2. University of Nevada, Reno, Department of Biology, 1664 N. Virginia Street, Reno, NV 89557, USA.

Abstract

Anthropogenic climate change is influencing the ecology and distribution of animals. The American pika (Ochotona princeps (Richardson, 1828)) is considered a model species for studying the effects of climate on small alpine mammals and has experienced local extirpation across its range. Using stable isotope analysis of two seasonal molts and bone collagen, we characterize the isotopic carbon and nitrogen niche of pika populations across their range and through time. We find pika isotopic diet to be stable across both time and space compared with other animals and considering the geographic and environmental extent of their range. We find that climatic, not geographic, factors explain part of the isotopic variation across their range. Both δ13C and δ15N from the fall-onset molt decrease with relative humidity of the environment and δ15N values from bone collagen increase with temperature and precipitation. We find a small but significant seasonal difference in δ13C, which could be explained by microbial enrichment of cached haypiles. We establish a baseline of pika isotopic diet and patterns related to climate across their range. We conclude that differences in isotopic signature between pika populations likely reflect the physiology of their forage plants in different environmental conditions.

Publisher

Canadian Science Publishing

Subject

Animal Science and Zoology,Ecology, Evolution, Behavior and Systematics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3