Leaf structure of Cananga odorata (Annonaceae) in relation to the collection of photosynthate and phloem loading: morphology and anatomy

Author:

Fisher David G.

Abstract

Four distinct anatomical types of minor veins occur in Cananga odorata leaves. In order of decreasing size, they are (i) type I, with tracheary elements, fibers, vascular parenchyma cells, companion cells, and mostly nacreous-walled sieve-tube members; (ii) type II, with the same cell types except that the sieve-tube members have walls that usually lack nacreous thickenings; (iii) type III, with only vascular parenchyma cells and tracheids; and (iv) type IV (vein endings), with tracheary elements only. The proportions of the total minor vein length occupied by each are type I, 15.1%; type II, 27.2%; type III, 24.4%; and type IV, 33.3%. Thus about 60% of the minor vein network lacks sieve tubes. The average interveinal distance for all minor veins is 121 μm, but the average for veins containing sieve-tubes is 329 μm. Other salient features include vascular parenchyma cells up to 130 μm long, bundle-sheath cells whose lateral protuberances into the mesophyll increase extensively with decreasing vein size, and five layers of horizontally oriented spongy parenchyma cells. These features may facilitate transport of assimilate to the relatively small proportion of the minor vein network that contains sieve tubes.

Publisher

Canadian Science Publishing

Subject

Plant Science

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Usual and unusual development of the dicot leaf: involvement of transcription factors and hormones;Plant Cell Reports;2013-04-03

2. Organ homologies in orchid flowers re-interpreted using the Musk Orchid as a model;PeerJ;2013-02-12

3. Meliaceae;Flowering Plants. Eudicots;2010

4. The leaf;An Introduction to Plant Structure and Development;2005-10-27

5. Genetic evidence for polarities that regulate leaf morphogenesis;Journal of Plant Research;1998-03

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3