Influence of solvent on the magnitude of the anomeric effect

Author:

Praly J.-P.,Lemieux R. U.

Abstract

A novel application of 13C nuclear magnetic resonance provided the effects of solvent polarity and hydrogen-bond formation on the conformational equilibria for a range of 2-substituted tetrahydropyrans and the results are interpreted in terms of how solvent affects the competition between the endo- and exo-anomeric effects in determining the magnitude of the anomeric effect. In accord with the generally accepted origin of the endo- and exo-anomeric effects (anti-periplanar n–σ* interaction of the oxygen lone-pair orbital with the antibonding orbital of the adjacent C—O bond), the exo-anomeric effect for the α anomer is expected to be weaker because charge delocalization from the glycosidic oxygen to anomeric center is in competition with delocalization from the ring-oxygen atom. The effects of solvent on the relative magnitudes of the endo- and exo-anomeric effects are then considered to arise from the formation of specific complexes with the solvent, and the exo-anomeric effect of a β-glycoside is more strongly influenced. It is contended that hydrogen bonding of solvent to the ring oxygen increases the exo-anomeric effects. For this reason water is particularly effective for the strengthening of the exo-anomeric effect and, thereby, the conformational rigidity of glycosides. Experimental evidence is presented that indicates that the anomeric hydroxyl groups of free sugars dissolved in water tend to prefer the equatorial orientation because these provide stronger hydrogen bonds as proton donors to water.

Publisher

Canadian Science Publishing

Subject

Organic Chemistry,General Chemistry,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3