Author:
Murata Kousaku,Inoue Yoshiharu,Rhee Hae-ik,Kimura Akira
Abstract
The properties of methylglyoxal-metabolizing enzymes in prokaryotic and eukaryotic microorganisms were studied systematically and compared with those of mammalian enzymes. The enzymes constitute a glycolytic bypass and convert methylglyoxal into pyruvate via lactate. The first step in this conversion is catalyzed by glyoxalase I, methylglyoxal reductase, or methylglyoxal dehydrogenase. The regulation of the yeast glyoxalase system was analyzed. The system was closely related to the proliferative states of yeast cells, the activity of the system being high in dividing cells and low in nondividing ones. The gene for the glyoxalase I of Pseudomonas putida and the genes responsible for the activity of glyoxalase I and methylglyoxal reductase in Saccharomyces cerevisiae were cloned and their structural and phenotypic characters studied.Key words: 2-oxoaldehydes metabolism, regulation of glyoxalase system, cloning, glyoxalase I gene, methylglyoxal reductase gene, methylglyoxal metabolism.
Publisher
Canadian Science Publishing
Subject
Genetics,Molecular Biology,Applied Microbiology and Biotechnology,General Medicine,Immunology,Microbiology
Cited by
46 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献