Above- and below-ground responses of native and invasive prairie grasses to future climate scenarios

Author:

Duell Eric B.11,Wilson Gail W.T.11,Hickman Karen R.11

Affiliation:

1. Oklahoma State University, Stillwater, OK 74075, USA.

Abstract

More intense and frequent droughts, coupled with elevated temperatures, are projected for grasslands worldwide. Although it has been suggested that alterations in temperature and precipitation will increase the success of biological invasions, studies that combine these climate change scenarios are limited. These changes in climate may increase the success of non-native, invasive plant species directly, as these species often possess traits that are favored by variable climates, or indirectly through negative impacts on native vegetation or alterations in soil microbial communities, such as arbuscular mycorrhizal (AM) fungi. The goal of our research was to assess above- and below-ground production and mycorrhizal fungal abundance of functionally similar native and invasive non-native grass species under projected climate-change scenarios. We assessed plant biomass, intra-radical AM root colonization, and relative abundance of extra-radical fungal biomass of two native (Schizachyrium scoparium (Michx.) Nash, Pascopyrum smithii (Rydb.) Á.Löve) and two invasive (Bothriochloa ischaemum (L.) Keng, Bromus inermis Leyss.) grass species subjected to increased temperature and decreased soil water availability. Regardless of temperature or soil moisture, the invasive grasses in our study displayed greater seedling growth as compared with paired native species. Invasive grasses were also generally characterized by greater intra-radical colonization by AM fungi, compared with native species. Our data suggest that invasive grasses will continue to be problematic and successfully out-compete native grasses following increased temperatures and reduced water availability, as projected by climate-change models.

Publisher

Canadian Science Publishing

Subject

Plant Science,Ecology,Ecology, Evolution, Behavior and Systematics

Reference66 articles.

1. Available Water Influences Field Germination and Recruitment of Seeded Grasses

2. Plant sesquiterpenes induce hyphal branching in arbuscular mycorrhizal fungi

3. Linking water and nutrients through the vadose zone: a fungal interface between the soil and plant systems

4. Allison, V.J., and Miller, R.M. 2005. Using fatty acids to quantify arbuscular mycorrhizal fungi. In Basic research and applications of mycorrhizae. Edited by G. Podila and A. Varma. I.K. International Pvt. Ltd., New Delhi, India. pp. 141–161.

5. Water relations, drought and vesicular-arbuscular mycorrhizal symbiosis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3