BIOCHEMICAL STUDIES ON CHLORPROMAZINE: 2. EFFECTS OF CHLORPROMAZINE ON INCORPORATION INTO PROTEINS, AND BREAKDOWN OF GLYCINE-1-C14BY ISOLATED RAT BRAIN CORTEX

Author:

Lindan O.,Quastel J. H.,Sved S.

Abstract

Glycine is decomposed in rat brain cortex to yield carbon dioxide. This process, in which C14O2is formed from glycine-1-C14, is markedly stimulated by the presence of 10 mM glucose, the rate of production of C14O2being increased at least threefold. The presence of succinate exercises a much smaller stimulation of C14O2formation. The addition of KCl (0.1 M) or of 2,4-dmitrophenol (0.025 mM), whilst stimulating the rate of oxygen uptake, does not increase the rate of C14O2formation from glycine-1-C14. The addition of K+tends to diminish the rate. The process of glycine-1-C14breakdown to C14O2is almost insensitive to chlorpromazine, under the given experimental conditions, until relatively high concentrations (e.g. 0.6 mM) are used. The presence of chlorpromazine, however, brings about an inhibition of the rate of glycine-1-C14incorporation into rat brain cortex proteins, an inhibition of 20% being recorded at a concentration of the drug (0.2 mM) that has little or no effect on the respiration of the brain or on the rate of breakdown of glycine-1-C14into C14O2. Glycine incorporation into brain cortex proteins is a process relatively sensitive to chlorpromazine, the magnitude of inhibition being of the same order as that brought about by amytal at similar concentrations. It is suggested that chlorpromazine brings about its effects by an uncoupling of phosphorylation from oxidation in brain cortex slices.

Publisher

Canadian Science Publishing

Subject

General Medicine

Cited by 21 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Surface activity of drugs;Studies in Interface Science;2005

2. Protein Turnover;Metabolic Turnover in the Nervous System;1971

3. TRANSPORT PROCESSES AT THE BRAIN CELL MEMBRANE;Neurosciences Research;1970

4. Phenothiazines;Psychopharmacological Agents;1967

5. The effects of drugs on uptake and exit of cerebral amino acids;Biochemical Pharmacology;1965-05

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3