Numerical simulations of seismic and post-seismic behavior of tailings

Author:

Ferdosi Behnam11,James Michael11,Aubertin Michel11

Affiliation:

1. Department of Civil, Geological and Mining Engineering, École Polytechnique de Montréal, C.P. 6079, Centre-ville, Montréal, QC H3C 3A7, Canada.

Abstract

Several tailings impoundments have failed as a result of earthquakes in the last few decades. A majority of these failures were due to direct seismic loading, tailings liquefaction during shaking, or the post-seismic behavior of the tailings as it relates to the dissipation of excess pore-water pressures that were generated during shaking. Previous work has indicated that the UBCSAND model developed by Byrne et al. in 1995 is capable of simulating the cyclic simple shear testing response of low-plasticity tailings over a range of consolidation stresses and cyclic shear ratios. However, the ability of the model to simulate the dynamic and subsequent behavior of such tailings for other conditions, such those induced by shaking table tests, has not yet been evaluated. In this regard, previous work has shown that the main components of the UBCSAND model cannot realistically simulate some specific responses, including the post-seismic volumetric strains related to excess pore-water pressure dissipation. This paper presents numerical modeling results of the dynamic behavior of tailings from hard rock mines. It introduces a method for simulating their post-seismic behavior by including an updating scheme for the elastic moduli into the UBCSAND model. The results of cyclic simple shear testing, seismic table testing, and complementary experimental relationships were used to calibrate and validate the model with its new component. The simulated response of tailings during cyclic simple shear testing and for a complete seismic table test shows that the proposed approach simulates the experimental observations well. Level-ground, seismically induced liquefaction and post-seismic behavior of a 15 m thick tailings deposit are also simulated, leading to post-liquefaction settlements that are in agreement with empirical relationships.

Publisher

Canadian Science Publishing

Subject

Civil and Structural Engineering,Geotechnical Engineering and Engineering Geology

Reference30 articles.

1. American Standards and Test Methods (ASTM). 2006. Standard practice for classification of soils for engineering purposes (Unified Soil Classification System). ASTM standard D2487. American Society for Testing and Materials, West Conshohocken, Pa.

2. Boulanger, R.W., and Ziotopoulou, K. 2015. PM4Sand (version 3): a sand plasticity model for earthquake engineering applications. Center for Geotechnical Modeling Report No. UCD/CGM-15/01, Department of Civil and Environmental Engineering, University of California, Davis, Calif.

3. Bowles, J.E. 1996. Foundation analysis and design. 5th ed. McGraw-Hill College, New York.

4. Colloquium 2004: Hydrogeotechnical properties of hard rock tailings from metal mines and emerging geoenvironmental disposal approaches

Cited by 24 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3