Axial monotonic and cyclic compression behaviour of hollow-bar micropiles

Author:

Drbe Osama F. El Hadi1,El Naggar M. Hesham2

Affiliation:

1. Department of Civil and Environmental Engineering, The University of Western Ontario, London, ON N6A 5B9, Canada; University of Benghazi, Benghazi, Libya.

2. Department of Civil and Environmental Engineering, The University of Western Ontario, London, ON N6A 5B9, Canada.

Abstract

Micropiles are used in various applications, including low-capacity micropile networks, underpinning, and seismic retrofitting of existing foundations and high-capacity foundations for new structures. Hollow-bar micropiles have an added advantage, as they provide fast installation with a high degree of ground improvement. The current Federal Highway Administration (FHWA) design guidelines designate hollow-bar micropiles as type B, even though the FHWA construction technique is different than the technique used for typical type B, which results in an overly conservative design. In addition, the current practice for construction of hollow-bar micropiles is limited to a drilling bit / hollow-bar diameter ratio of 2.5 or less. In this paper, full-scale load tests were conducted to evaluate the suitability of FHWA design guidelines to hollow-bar micropiles installed in cohesive soil and to evaluate the performance of hollow-bar micropiles constructed with a drilling bit / hollow-bar diameter ratio of 3. Eight micropiles were constructed using 76 mm (3 in.) hollow bars (76 mm outside diameter and 48 mm inside diameter) with the air–water flushing technique and advanced to a depth of 5.75 m: six micropiles were installed using a 228 mm (9 in.) drill bit and two micropiles were installed using a 178 mm (7 in.) drill bit. All micropiles were instrumented with vibrating wire strain gauges to measure the axial strain at three stations along the micropile shaft. The load tests included four axial monotonic and four cyclic axial loading tests. The results are presented and discussed in terms of load–displacement curves and load transfer mechanism. The load test results showed that the grout–ground bond strength values proposed by the FHWA (in 2005) for type B micropiles grossly underestimate the bond strength for calculating the ultimate capacity. In addition, the toe resistance can be significant for micropiles resting on sand due to the increased toe diameter. No tangent stiffness degradation was observed in the micropile capacity after applying 15 load cycles.

Publisher

Canadian Science Publishing

Subject

Civil and Structural Engineering,Geotechnical Engineering and Engineering Geology

Reference24 articles.

1. Abd Elaziz, A.Y. 2012. Performance of hollow bar micropiles under axial and lateral loads in cohesive soils. Ph.D. dissertation, Department of Civil and Environmental Engineering, Western University, London, Ont.

2. Axial Behaviour of Hollow Core Micropiles Under Monotonic and Cyclic Loadings

3. Geotechnical capacity of hollow-bar micropiles in cohesive soils

4. Test Methods for Deep Foundations Under Static Axial Compressive Load

5. ASTM. 2011. Standard practice for classification of soils for engineering purposes (Unified Soil Classification System). ASTM standard D2487. American Society for Testing and Materials, West Conshohocken, Pa. 10.1520/D2487-06E01.

Cited by 39 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3