Geomechanical safety assessment for transversely isotropic rock mass subjected to deep mining operations

Author:

Pytel W.11,Pałac-Walko B.11

Affiliation:

1. KGHM Cuprum CBR; Wrocław University of Technology, Poland.

Abstract

The largest risk for mining operations conducted within the Legnica–Głogów Copper Basin is created mostly by high-energy tremors, the hypocenters of which are located within the main roof strata composed of sedimentary-type rocks — mainly dolomite and anhydrite — about 40–200 m above the excavated copper ore body. These categories of rock clearly exhibit anisotropic strength–deformation characteristics that may significantly affect the safety level value represented by the appropriate safety margin (or safety factor) based on an adequate strength hypothesis. As the focal mechanism most often encountered in such tremors is a slipping-type mechanism with a rupture plane, typically the Mohr–Coulomb theory of strength is applied for a safety level assessment in Polish copper mines. It has been assumed, however, that strength theories based on anisotropic failure criteria should serve as better indicators of correlation between observed and well-characterized sedimentary rock strata failure mechanisms and the location of concentrated areas of the negative values of margin of safety within the rock mass. As changing levels of stress in the rock mass during the mining process may be tracked effectively using solutions offered by appropriate three-dimensional geomechanical models (e.g., finite element method), the assessment of these changes due to mining-face progress is also possible in the location where the seismic tremor occurred. This assessment is characterized by its focal mechanism using the appropriate geophysical methods that permit finding such geomechanical conditions, engaging also the rock mass’ strain–stress states and the material anisotropic characteristics. On the basis of the long-term path of rock mass loading — due to mining predicted by numerical modeling — this could indicate the necessary conditions that should be fulfilled if the anticipated methods of the geophysics failure mechanism could be developed. This is particularly important for anisotropic rock structures. The proposed approach is illustrated using an example of a strong seismic energy event of 0.22 GJ that occurred in 2005 in an area of the Rudna mine.

Publisher

Canadian Science Publishing

Subject

Civil and Structural Engineering,Geotechnical Engineering and Engineering Geology

Reference22 articles.

1. Importance of anisotropy when estimating and measuring in situ stresses in rock

2. Barla, G. 1974. Rock anisotropy: theory and laboratory testing. In Rock mechanics. Edited by L. Muller. Udine, Italy. pp. 131–169.

3. Bewick, R.P., and Kaiser, P.K. 2009. Influence of rock mass anisotropy on tunnel stability. In ROCKENG09, Proceedings of the 3rd CANUS Rock Mechanics Symposium, Toronto, Ont. Edited by Diederichs and Grasselli. Paper No. 3995.

4. Anisotropy of strength and deformability of fractured rocks

5. Bieniawski, Z.T. 1989. Engineering rock mass classification. Wiley, New York.

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3