Affiliation:
1. Department of Civil Engineering, Université de Sherbrooke, Sherbrooke, QC J1K 2R1, Canada.
2. Département de génie de la construction, École de technologie supérieure 1100, rue Notre-Dame Ouest, Montréal, QC H3C 1K3, Canada.
Abstract
A precise evaluation of shear wave velocity, Vs, is a crucial issue in the design of foundations subjected to dynamic loading, liquefaction evaluation, and soil improvement control. Laboratory techniques such as resonant column (RC) and bender element (BE) have been developed over the years to measure Vs. At low strain (γ < 10−3), techniques based on piezoelectric elements (e.g., BE) can be considered superior to RC, as they can be used in conventional geotechnical devices (e.g., triaxial, oedometer, direct simple shear, etc.). However, it is a difficult task to verify that the obtained Vs values are correct and accurate, as there are several difficulties associated with these methods, including the mixed radiation of both primary and shear waves, near-field effects, boundary effects, and uncertain detection of first arrivals. This paper presents the use of a new technique to measure Vs in granular material, called the piezoelectric ring-actuator technique (P-RAT), developed at the Université de Sherbrooke. The paper also provides a detailed description of a unique interpretation method of the signals produced from this technique to minimize the difficulties associated with other techniques. The P-RAT has been incorporated into the well-known oedometer cell to measure the Vs of Péribonka sand through a series of oedometric tests, and the obtained results have been detailed, analyzed, and discussed in light of the basic state of knowledge of Vs and factors affecting it. Particular emphasis is also placed on the validation of the accuracy of the P-RAT by means of reliable experimental measurements available in literature.
Publisher
Canadian Science Publishing
Subject
Civil and Structural Engineering,Geotechnical Engineering and Engineering Geology
Cited by
34 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献