Measuring shear wave velocity of granular material using the piezoelectric ring-actuator technique (P-RAT)

Author:

Karray Mourad1,Ben Romdhan Mohamed1,Hussien Mahmoud N.1,Éthier Yannic2

Affiliation:

1. Department of Civil Engineering, Université de Sherbrooke, Sherbrooke, QC J1K 2R1, Canada.

2. Département de génie de la construction, École de technologie supérieure 1100, rue Notre-Dame Ouest, Montréal, QC H3C 1K3, Canada.

Abstract

A precise evaluation of shear wave velocity, Vs, is a crucial issue in the design of foundations subjected to dynamic loading, liquefaction evaluation, and soil improvement control. Laboratory techniques such as resonant column (RC) and bender element (BE) have been developed over the years to measure Vs. At low strain (γ < 10−3), techniques based on piezoelectric elements (e.g., BE) can be considered superior to RC, as they can be used in conventional geotechnical devices (e.g., triaxial, oedometer, direct simple shear, etc.). However, it is a difficult task to verify that the obtained Vs values are correct and accurate, as there are several difficulties associated with these methods, including the mixed radiation of both primary and shear waves, near-field effects, boundary effects, and uncertain detection of first arrivals. This paper presents the use of a new technique to measure Vs in granular material, called the piezoelectric ring-actuator technique (P-RAT), developed at the Université de Sherbrooke. The paper also provides a detailed description of a unique interpretation method of the signals produced from this technique to minimize the difficulties associated with other techniques. The P-RAT has been incorporated into the well-known oedometer cell to measure the Vs of Péribonka sand through a series of oedometric tests, and the obtained results have been detailed, analyzed, and discussed in light of the basic state of knowledge of Vs and factors affecting it. Particular emphasis is also placed on the validation of the accuracy of the P-RAT by means of reliable experimental measurements available in literature.

Publisher

Canadian Science Publishing

Subject

Civil and Structural Engineering,Geotechnical Engineering and Engineering Geology

Cited by 34 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3