Centrifuge modeling of shallow embedded foundations subjected to reverse fault rupture

Author:

Ashtiani Mehdi1,Ghalandarzadeh Abbas1,Towhata Ikuo2

Affiliation:

1. School of Civil Engineering, University College of Engineering, University of Tehran, Tehran, Iran.

2. Department of Civil Engineering, University of Tokyo, Tokyo, Japan.

Abstract

Although the performance of surface, piled, and caisson foundations has been investigated against a large tectonic dislocation from a dip-slip fault, to date, the embedment depth has not been clearly considered on the behavior of shallow foundations subjected to dip-slip faulting. This paper presents a series of centrifuge model tests to investigate the effects of foundation embedment depth and contact pressure on the interaction of reverse faults and shallow foundations embedded at a depth of D. The effect of embedment depth on the behavior of a foundation was observed by comparing the results of the embedded foundation tests with those of surface foundation tests. The depth of the embedment, acting as a kinematic constraint, prevents the occurrence of sliding at the foundation–soil interface and consequently leads to significant foundation rotation and translation. Moreover, embedding the foundation causes the mechanism of the fault rupture – foundation interaction to change. The effect of contact pressure on the interaction of the fault rupture and the embedded foundations depends on the foundation position relative to the fault. In addition to the propagation of fault ruptures through the soil layer, passive failure wedges primarily occurred on both sides of the embedded foundations because of their translation and rotation, thereby imposing unfavorable effects on the adjacent structures.

Publisher

Canadian Science Publishing

Subject

Civil and Structural Engineering,Geotechnical Engineering and Engineering Geology

Cited by 43 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3