Effect of consolidation on responses of a single pile subjected to lateral soil movement

Author:

Wang L.Z.1,Chen K.X.1,Hong Y.1,Ng C.W.W.2

Affiliation:

1. College of Civil Engineering and Architecture, Zhejiang University, Hangzhou, China.

2. Department of Civil and Environmental Engineering, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong.

Abstract

Given extensive research carried out to study pile response subjected to lateral soil movement in clay, the effect of consolidation on the pile–soil interaction is rarely considered and systematically investigated. For this reason, four centrifuge tests were conducted to simulate construction of embankment adjacent to existing single piles in soft clay, considering two typical drainage conditions (i.e., drained and undrained conditions) and two typical pile lengths (i.e., relatively long pile and short pile). The centrifuge tests were then back-analyzed by three-dimensional coupled-consolidation finite element analyses. Based on reasonable agreements between the two, numerical parametric studies were conducted to systematically investigate and quantify the influence of construction rate and pile length on pile response. It is revealed that by varying drainage conditions, the piles respond distinctively. When the embankment is completed within a relatively short period (cvt/d2 < 2, where cv, t, and d denote the coefficient of consolidation, construction period, and pile diameter, respectively), the pile located adjacent to it deforms laterally away from the embankment. Induced lateral pile deflection (δ) and bending moment reduce with construction period. On the contrary, embankment constructed within a relatively long period (cvt/d2 > 200) leads the pile to deform laterally towards the embankment, with δ and bending moment increases with construction period. By halving the length of pile embedded in the drained ground, the maximum induced bending moment (BMmax) was slightly reduced (by 23%). On the other hand, shortening the length of the pile in the undrained ground is much more effective in reducing BMmax, i.e., halving pile length resulting in 78% reduction in bending moment. A new calculation chart, which takes various drainage conditions and pile lengths into account, was developed for estimation of BMmax.

Publisher

Canadian Science Publishing

Subject

Civil and Structural Engineering,Geotechnical Engineering and Engineering Geology

Reference39 articles.

1. Al-Tabbaa, A. 1987. Permeability and stress–strain response of Speswhite Kaolin. Ph.D. thesis, University of Cambridge, U.K.

2. Benz, T. 2007. Small-strain stiffness and its numerical consequences. Ph.D. thesis, Universitat Stuttgart.

3. The effect on propped diaphragm walls of rising groundwater in stiff clay

4. A natural compression law for soils (an advance on e–log p′)

5. Analysis of pile-soil interaction under lateral loading using infinite and finite elements

Cited by 28 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3