Affiliation:
1. Department of Civil and Environmental Engineering, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong.
2. School of Science and Engineering, University of Dundee, Dundee DD1 4HN, UK.
Abstract
For a given evapotranspiration (ETr), both soil evaporation and plant transpiration (Tr) would induce soil suction. However, the relative contribution of these two processes to the amount of suction induced is not clear. The objective of this study is to quantify ETr- and Tr-induced suction by a selected tree species, Scheffllera heptaphylla, in silty sand. The relative contribution of transpiration and evaporation to the responses of suction is then explored based on observed differences in Tr- and ETr-induced suction. In total, 12 test boxes were used for testing: 10 for vegetated soil with different values of leaf area index (LAI) and root area index (RAI), while two were for bare soil as references. Each box was exposed to identical atmospheric conditions controlled in a plant room for monitoring suction responses over a week. Due to the additional effects of soil evaporation, ETr-induced suction could be 3%–47% higher than Tr-induced suction, depending on LAI. The significance of evaporation reduced substantially when LAI was higher, as relatively less radiant energy fell on the soil surface for evaporation. For a given LAI, the effects of evaporation were less significant at deeper depths within the root zone. The effects of RAI associated with root-water uptake upon transpiration were the dominant process of ETr affecting the suction responses.
Publisher
Canadian Science Publishing
Subject
Civil and Structural Engineering,Geotechnical Engineering and Engineering Geology
Reference33 articles.
1. ASTM. 2011. Standard practice for classification of soils for engineering purposes (Unified Soil Classification System). ASTM standard D2487. American Society for Testing and Materials, West Conshohocken, Pa.
2. Correspondence
3. Experimental and numerical investigation of soil-atmosphere interaction
4. Bioengineering ground improvement considering root water uptake model
5. Feddes, R.A., Kowalik, P.J., and Zaradny, H. 1978. Simulation of field water use and crop yield. Centre for Agricultural Publishing and Documentation.
Cited by
84 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献