Aberrant mTOR/autophagy/Nurr1 signaling is critical for TSC-associated tumor development

Author:

Wang Ying1,Li Chunjia2,Zhang Yanzhuo1,Zha Xiaojun3,Zhang Hongbing4,Hu Zhongdong5,Wu Chengai1

Affiliation:

1. Department of Molecular Orthopaedics, Beijing Research Institute of Traumatology and Orthopaedics, Beijing Jishuitan Hospital, Beijing 100035, China.

2. Department of Rheumatology, China-Japan Friendship Hospital, Beijing 100029, China.

3. Department of Biochemistry & Molecular Biology, School of Basic Medicine, Anhui Medical University, Hefei, Anhui 230032, China.

4. State Key Laboratory of Medical Molecular Biology, Department of Physiology, Institute of Basic Medical Sciences and School of Basic Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, China.

5. Modern Research Center for Traditional Chinese Medicine, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China.

Abstract

Tuberous sclerosis complex (TSC), an inherited neurocutaneous disease, is caused by mutations in either the TSC1 or TSC2 gene. This genetic disorder is characterized by the growth of benign tumors in the brain, kidneys, and other organs. As a member of the orphan nuclear receptor family, nuclear receptor related 1 (Nurr1) plays a vital role in some neuropathological diseases and several types of benign or malignant tumors. Here, we explored the potential regulatory role of TSC1/2 signaling in Nurr1 and the effect of Nurr1 in TSC-related tumors. We found that Nurr1 expression was drastically decreased by the disruption of the TSC1/2 complex in Tsc2-null cells, genetically modified mouse models of TSC, cortical tubers of TSC patients, and kidney tumor tissue obtained from a TSC patient. Deficient TSC1/2 complex downregulated Nurr1 expression in an mTOR-dependent manner. Moreover, hyperactivation of mTOR reduced Nurr1 expression via suppression of autophagy. In addition, Nurr1 overexpression inhibited cell proliferation and suppressed cell cycle progression. Therefore, TSC/mTOR/autophagy/Nurr1 signaling is partially responsible for the tumorigenesis of TSC. Taken together, Nurr1 may be a novel therapeutic target for TSC-associated tumors, and Nurr1 agonists or reagents that induce Nurr1 expression may be used for the treatment of TSC.

Publisher

Canadian Science Publishing

Subject

Cell Biology,Molecular Biology,Biochemistry

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3