Bone marrow mesenchymal stem cell-derived extracellular vesicles facilitate endometrial injury repair by carrying the E3 ubiquitin ligase WWP1

Author:

Wang Xinxin123,Wu Junwei234,Xie Ya1,Liu Yanjie1,Feng Wei1,Zhang Lirong2,Zhao Jing3,Meng Hongyu3,Chen Baohong3,Zhao Qian1,Guo Ruixia1ORCID

Affiliation:

1. Department of Gynecology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China

2. School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China

3. Hua County People's Hospital, Anyang, Henan, China

4. Department of Urology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China

Abstract

Bone marrow mesenchymal stem cells-derived extracellular vesicles (BMSC-EVs) relieve endometrial injury. This study aimed to elucidate the BMSC-EV mechanism in alleviating endometrial injury. Endometrial injury model in vivo was induced using 95% ethanol, and endometrial epithelial cells (EECs) treated with mifepristone were applied as an endometrial injury model in vitro. After BMSCs and BMSC-EVs were isolated and identified, the BMSC-EV function was evaluated by hematoxylin–eosin and Masson staining, immunohistochemistry, quantitative real-time PCR, Cell Counting Kit-8 assay, flow cytometry, enzyme-linked immunosorbent assay, and Transwell and tubule formation assays. The BMSC-EV mechanism was assessed using Western blot, ubiquitination, and cycloheximide-chase assays. After isolation and identification, BMSC-EVs were effective in endometrial injury repair in vivo and facilitated EEC proliferation and repressed cell apoptosis in vitro; the EEC supernatants accelerated human umbilical vein endothelial cell proliferation, migration, and invasion and facilitated angiogenesis after endometrial injury in vitro. For the BMSC-EV mechanism, E3 ubiquitin ligase WWP1 in BMSC-EVs mediated the ubiquitination of peroxisome proliferator-activated receptor gamma (PPARγ), thus relieving the PPARγ inhibition on vascular endothelial growth factor expression. Furthermore, the WWP1 in BMSC-EVs alleviated endometrial injury in vitro and in vivo. BMSC-EVs facilitated endometrial injury repair by carrying WWP1.

Publisher

Canadian Science Publishing

Subject

Cell Biology,Molecular Biology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3