Hoxa5 inhibits adipocyte proliferation through transcriptional regulation of Ccne1 and blocking JAK2/STAT3 signaling pathway in mice

Author:

Pan Miao1,Sun Qian1,Li Chaowei1,Tai Ruiqing1,Shi Xin’e1,Sun Chao1ORCID

Affiliation:

1. College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China

Abstract

The highly regulated proliferation of adipocytes plays a momentous role in fat development and obesity. Hoxa5 is an important member of the Hox family, its encoded protein is an important transcription factor related to development, and its differential expression in different adipose tissues seems to indicate that Hoxa5 may be involved in the regulation of adipocyte proliferation. To evaluate the regulatory mechanism of Hoxa5 on adipocyte proliferation, we constructed a variety of Hoxa5 expression vectors in vivo and in vitro to explore its mechanism on adipocyte proliferation and its potential impact on obesity. We observed that the overexpression of Hoxa5 strongly reduces cell counts and Hoxa5 can inhibit cell proliferation and block cell cycle progression by regulating the expression of genes such as Cyclin E, Cyclin D1, and p53. Most importantly, we demonstrated that Hoxa5 exerts its effect by regulating the signaling pathway of Janus kinase 2 (JAK2) signal transduction and transcription 3 (STAT3) activator, as well as binding to the promoter region of Ccne1 and inhibiting the transcription of Ccne1. This study provides an in-depth understanding of the potential molecular mechanism of Hoxa5 inhibiting adipocyte proliferation. Our results suggest the importance of Hoxa5 in the treatment of obesity.

Funder

National Key Research and Development Program of China

Natural Science Foundation of China

Publisher

Canadian Science Publishing

Subject

Cell Biology,Molecular Biology,Biochemistry

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3