The effects of parameter choice on defining molecular operational taxonomic units and resulting ecological analyses of metabarcoding data

Author:

Clare Elizabeth L.1,Chain Frédéric J.J.2,Littlefair Joanne E.1,Cristescu Melania E.2

Affiliation:

1. School of Biological and Chemical Sciences, Queen Mary University of London. Mile End Rd., London, E1 4NS, UK.

2. Department of Biology, McGill University, 1205 Docteur Penfield, Montréal, QC H3A 1B1, Canada.

Abstract

The combination of DNA barcoding and high-throughput (next-generation) sequencing (metabarcoding) provides many promises but also serious challenges. Generating a reliable comparable estimate of biodiversity remains a central challenge to the application of the technology. Many approaches have been used to turn millions of sequences into distinct taxonomic units. However, the extent to which these methods impact the outcome of simple ecological analyses is not well understood. Here we performed a simple analysis of dietary overlap by skinks and shrews on Ile Aux Aigrettes, Mauritius. We used a combination of filtering thresholds and clustering algorithms on a COI metabarcoding dataset and demonstrate that all bioinformatics parameters will have interacting effects on molecular operational taxonomic unit (MOTU) recovery rates. These effects generated estimates covering two orders of magnitude. However, the effect on a simple ecological analysis was not large and, despite the wide variation in estimates of niche overlap, the same ecological conclusion was drawn in most cases. We advise that a conservative clustering programme coupled with larger sequence divergences to define a cluster, the removal of singletons, rigorous length filtering, and stringent match criteria for Molecular Identifier tags are preferable to avoid MOTU inflation and that the same parameters be used in all comparative analyses.

Publisher

Canadian Science Publishing

Subject

Genetics,Molecular Biology,General Medicine,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3