Darwin’s legacy II: why biology is not physics, or why it has taken a century to see the dependence of genes on the environment

Author:

Singh Rama S.11

Affiliation:

1. Department of Biology, McMaster University, 1280 Main Street West, Hamilton, ON L8S 4K1, Canada.

Abstract

Genes and environment make the organism. Darwin stood firm in his denial of any direct role of environment in the modification of heredity. His theory of evolution heralded two debates: one about the importance and adequacy of natural selection as the main mechanism of evolution, and the other about the role of genes versus environment in the modification of phenotype and evolution. Here, I provide an overview of the second debate and show that the reasons for the gene versus environment battle were twofold: first, there was confusion about the role of environment in modifying the inheritance of a trait versus the evolution of that trait, and second, there was misunderstanding about the meaning of environment and its interaction with genes in the production of phenotypes. It took nearly a century to see that environment does not directly affect the inheritance of a phenotype (i.e., its heredity), but it is nevertheless the primary mover of phenotypic evolution. Effects of genes and environment are not separate but interdependent. One cannot separate the effect of genes from that of environment, or nature from nurture. To answer the question posed in the title, it is partly because the 20th century has been a century of unending progress in genetics. But also because unlike physics, biology is not colorblind; progress in biology has often been delayed beyond the Kuhnian paradigm change due to built-in interest in negating the influence of environment. Those who are against evolution, of course, cannot be expected to understand the role of environment in evolution. Those for it, many biologists included, believing in the supremacy of genes empowers them by giving adaptation a solely gene-directed (self-driven) “teleological” interpretation.

Publisher

Canadian Science Publishing

Subject

Genetics,Molecular Biology,General Medicine,Biotechnology

Reference53 articles.

1. Induced Responses to Herbivory and Increased Plant Performance

2. Bradshaw, A.D. 1965. Evolutionary significance of phenotypic plasticity in plants.InAdvances in genetics.Edited byE.W. Caspari and J.M. Thoday. Academic Press. pp. 115–155.

3. Carey, N. 2012. The epigenetics revolution. Icon Books Ltd., London.

4. Exploring the Complexity of Intellectual Disability in Fetal Alcohol Spectrum Disorders

5. Clausen, J., Keck, D.D., and Hiesey, W.M. 1948. Experimental studies on the nature of species. III. Environmental responses of climatic races ofAchillea. Carnegie Institution of Washington 581. pp. 1–129.

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3