In silico prediction of long intergenic non-coding RNAs in sheep

Author:

Bakhtiarizadeh Mohammad Reza12,Hosseinpour Batool32,Arefnezhad Babak42,Shamabadi Narges5,Salami Seyed Alireza26

Affiliation:

1. Department of Animal and Poultry Science, College of Aburaihan, University of Tehran, Pakdasht, Tehran, Iran.

2. OMICS™ Research Group, Tehran, Iran.

3. Department of Agriculture, Iranian Research Organization for Science and Technology, Tehran, Iran.

4. Department of Molecular Systems Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran.

5. Center of Environmental Researches, University of Qom, Qom, Iran.

6. University of Tehran, Tehran, Iran.

Abstract

Long non-coding RNAs (lncRNAs) are transcribed RNA molecules >200 nucleotides in length that do not encode proteins and serve as key regulators of diverse biological processes. Recently, thousands of long intergenic non-coding RNAs (lincRNAs), a type of lncRNAs, have been identified in mammalians using massive parallel large sequencing technologies. The availability of the genome sequence of sheep (Ovis aries) has allowed us genomic prediction of non-coding RNAs. This is the first study to identify lincRNAs using RNA-seq data of eight different tissues of sheep, including brain, heart, kidney, liver, lung, ovary, skin, and white adipose. A computational pipeline was employed to characterize 325 putative lincRNAs with high confidence from eight important tissues of sheep using different criteria such as GC content, exon number, gene length, co-expression analysis, stability, and tissue-specific scores. Sixty-four putative lincRNAs displayed tissues-specific expression. The highest number of tissues-specific lincRNAs was found in skin and brain. All novel lincRNAs that aligned to the human and mouse lincRNAs had conserved synteny. These closest protein-coding genes were enriched in 11 significant GO terms such as limb development, appendage development, striated muscle tissue development, and multicellular organismal development. The findings reported here have important implications for the study of sheep genome.

Publisher

Canadian Science Publishing

Subject

Genetics,Molecular Biology,General Medicine,Biotechnology

Cited by 30 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3