Modelling of pipeline under differential frost heave considering post-peak reduction of uplift resistance in frozen soil

Author:

Hawlader Bipul C,Morgan Vincent,Clark Jack I

Abstract

The interaction between buried chilled gas pipelines and the surrounding frozen soil subjected to differential frost heave displacements has been investigated. A simplified semi-analytical solution has been developed considering the post-peak reduction of uplift resistance in frozen soil as observed in laboratory tests. The nonlinear stress–strain behaviour of the pipeline at large strains has been incorporated in the analysis using an equivalent bending stiffness. The predicted results agree well with our finite element analysis and also with numerical predictions available in the literature, hence the simple semi-analytical solution can be considered as an alternative to numerical techniques. A parametric study has been carried out to identify the influence of key factors that can modify the uplift resistance in frozen soil. Among them, the residual uplift resistance has been found to be the important parameter for the development of stresses and strains in the pipeline.Key words: pipeline, frost heave, discontinuous permafrost, semi-analytical solution, uplift resistance, frozen soil.

Publisher

Canadian Science Publishing

Subject

Civil and Structural Engineering,Geotechnical Engineering and Engineering Geology

Cited by 26 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3