Effective Markovian description of decoherence in bound systems

Author:

Sanz A.S.1

Affiliation:

1. Instituto de Física Fundamental (IFF–CSIC), Serrano 123, 28006 Madrid, Spain.

Abstract

Effective descriptions accounting for the evolution of quantum systems that are acted on by a bath are desirable. As the number of bath degrees of freedom increases and full quantum simulations turn out computationally prohibitive, simpler models become essential to understand and gain an insight into the main physical mechanisms involved in the system dynamics. In this regard, vibrational decoherence of an I2 diatomics is tackled here within the framework of Markovian quantum state diffusion. The I2 dynamics are analyzed in terms of an effective decoherence rate, Λ, and the specific choice of the initial state, in particular, Gaussian wave packets and two-state superpositions. It is found that, for Markovian baths, the relevant quantity regarding decoherence is the product of friction (η) and temperature (T); there is no distinction between varying one or the other. It is also observed that decoherence becomes faster as the energy levels involved in the system state correspond to higher eigenvalues. This effect is due to a population redistribution during the dynamical process and an eventual irreversible loss of the initial coherence. These results have been compared with those available in the literature from more detailed semiclassical IVR simulations, finding a good agreement.

Publisher

Canadian Science Publishing

Subject

Organic Chemistry,General Chemistry,Catalysis

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3