Halogenated poly(isobutylene-co-isoprene): influence of halogen leaving-group and polymer microstructure on chemical reactivity

Author:

McNeish Joanne R.1,Parent J. Scott1,Whitney Ralph A.1

Affiliation:

1. Departments of Chemistry and of Chemical Engineering, Queen’s University, Kingston, ON K7L 3N6, Canada.

Abstract

Brominated (BIIR) and chlorinated (CIIR) poly(isobutylene-co-isoprene) are commercially available materials commonly known as halobutyl rubbers. The effect of leaving-group ability on the reactivity of halogenated poly(isobutylene-co-isoprene) was studied to place iodobutyl rubber reactivity into context with these materials. The effect of microstructure on reactivity of existing commercial materials was studied through comparison to that of polymers containing rearranged halomethyl (r-CIIR, r-BIIR, and r-IIIR) microstructure (prepared from as-received BIIR). The effect of leaving group on both thermal stability and reactivity towards nucleophilic substitution with acetate, N-butylimidazole, and sulfur was examined. The material containing the iodomethyl microstructure (r-IIIR) readily underwent nucleophilic substitution at low temperatures; however, it was extremely sensitive towards dehydrohalogenation at temperatures above 65 °C. At temperatures between 100 and 135 °C, the material containing the bromomethyl microstructure (r-BIIR) demonstrated the greatest balance between reactivity toward nucleophilic substitution and elimination through dehydrohalogenation. Exceptional thermal stability at temperatures up to 190 °C was displayed by the material containing the chloromethyl microstructure (r-CIIR); however, its reactivity towards nucleophiles was variable and nucleophile dependent. Sulfur vulcanization studies showed a clear effect of microstructure on the ability to cure with sulfur. While commercial chlorobutyl rubber has no ability to cure with sulfur alone, when rearranged to its chloromethyl microstructure (r-CIIR), curing occurs readily. Both commercial (BIIR) and rearranged (r-BIIR) bromobutyl rubber readily vulcanize in the presence of sulfur; however, BIIR cures to a greater extent.

Publisher

Canadian Science Publishing

Subject

Organic Chemistry,General Chemistry,Catalysis

Reference19 articles.

1. Determination of the structure of butyl rubber by NMR spectroscopy

2. Butyl Rubber A new Hydrocarbon Product

3. Bellamy, M. J. Profiting the Crown; McGill−Queen’s University Press: Montreal and Kingston, 2005.

4. Butyl-Type Polymers Containing Bromine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3