Graph-theoretic analysis of a model for the coupling between photosynthesis and photorespiration

Author:

Amin Md. Ruhul1,Roussel Marc R.1

Affiliation:

1. Department of Chemistry and Biochemistry, University Hall, University of Lethbridge, Lethbridge, AB T1K 3M4, Canada.

Abstract

We develop and analyze a mathematical model based on a previously enunciated hypothesis regarding the origin of rapid, irregular oscillations observed in photosynthetic variables when a leaf is transferred to a low-CO2 atmosphere. This model takes the form of a set of differential equations with two delays. We review graph-theoretical methods of analysis based on the bipartite graph representation of mass-action models, including models with delays. We illustrate the use of these methods by showing that our model is capable of delay-induced oscillations. We present some numerical examples confirming this possibility, including the possibility of complex transient oscillations. We then use the structure of the identified oscillophore, the part of the reaction network responsible for the oscillations, along with our knowledge of the plausible range of values for one of the delays, to rule out this hypothetical mechanism.

Publisher

Canadian Science Publishing

Subject

Organic Chemistry,General Chemistry,Catalysis

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3