Contribution of leucine 85 to the structure and function ofSaccharomyces cerevisiaeiso-1 cytochromec

Author:

Parrish Jonathan C,Guillemette J Guy,Wallace Carmichael JA

Abstract

Cytochrome c is a small electron-transport protein whose major role is to transfer electrons between complex III (cytochrome reductase) and complex IV (cytochrome c oxidase) in the inner mitochondrial membrane of eukaryotes. Cytochrome c is used as a model for the examination of protein folding and structure and for the study of biological electron-transport processes. Amongst 96 cytochrome c sequences, residue 85 is generally conserved as either isoleucine or leucine. Spatially, the side chain is associated closely with that of the invariant residue Phe82, and this interaction may be important for optimal cytochrome c activity. The functional role of residue 85 has been examined using six site-directed mutants of Saccharomyces cerevisiae iso-1 cytochrome c, including, for the first time, kinetic data for electron transfer with the principle physiological partners. Results indicate two likely roles for the residue: first, heme crevice resistance to ligand exchange, sensitive to both the hydrophobicity and volume of the side chain; second, modulation of electron-transport activity through maintenance of the hydrophobic character of the protein in the vicinity of Phe82 and the exposed heme edge, and possibly of the ability of this region to facilitate redox-linked conformational change.Key words: protein engineering, cytochrome c, structure-function relations, electron transfer, hydrophobic packing.

Publisher

Canadian Science Publishing

Subject

Cell Biology,Molecular Biology,Biochemistry

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Electrostatics of Cytochrome-c assemblies;Journal of Molecular Modeling;2005-05-03

2. Current Awareness;Yeast;2001

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3