Author:
Parrish Jonathan C,Guillemette J Guy,Wallace Carmichael JA
Abstract
Cytochrome c is a small electron-transport protein whose major role is to transfer electrons between complex III (cytochrome reductase) and complex IV (cytochrome c oxidase) in the inner mitochondrial membrane of eukaryotes. Cytochrome c is used as a model for the examination of protein folding and structure and for the study of biological electron-transport processes. Amongst 96 cytochrome c sequences, residue 85 is generally conserved as either isoleucine or leucine. Spatially, the side chain is associated closely with that of the invariant residue Phe82, and this interaction may be important for optimal cytochrome c activity. The functional role of residue 85 has been examined using six site-directed mutants of Saccharomyces cerevisiae iso-1 cytochrome c, including, for the first time, kinetic data for electron transfer with the principle physiological partners. Results indicate two likely roles for the residue: first, heme crevice resistance to ligand exchange, sensitive to both the hydrophobicity and volume of the side chain; second, modulation of electron-transport activity through maintenance of the hydrophobic character of the protein in the vicinity of Phe82 and the exposed heme edge, and possibly of the ability of this region to facilitate redox-linked conformational change.Key words: protein engineering, cytochrome c, structure-function relations, electron transfer, hydrophobic packing.
Publisher
Canadian Science Publishing
Subject
Cell Biology,Molecular Biology,Biochemistry
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Electrostatics of Cytochrome-c assemblies;Journal of Molecular Modeling;2005-05-03
2. Current Awareness;Yeast;2001