The gauche Effect. A Theoretical Study of the Topomerization (Degenerate Racemization) and Tautomerization of Methoxide Ion Tautomer

Author:

Wolfe Saul,Tel Luis M.,Csizmadia I. G.

Abstract

Non-empirical double zeta quality molecular orbital calculations on CH2OH as a function of the C—O bond length (r), the rotational angle about the C—O bond (θ), and the pyramidal angle at carbon [Formula: see text] are described. From the stretching potential curve, E(r), it is shown that dissociation of CH2OH proceeds to give CH2 and OH. The rotation–inversion surface, [Formula: see text], has two types of minima; in both cases the most favorable pyramidal angle at carbon is 105°. The lower minimum corresponds to a structure (the Y conformation) having the hydroxyl proton on the external bisector of the HCH angle. The higher minimum is 6.67 kcal/mol less stable and corresponds to a structure (the W conformation) having the hydroxyl proton on the internal bisector of the HCH angle. The relationship of these results to the gauche effect is discussed and it is noted that at certain internuclear distances the nuclear–nuclear repulsion term (Enucl) may overcome the tendency of adjacent electron pairs and polar bonds to exist preferentially in that conformation which has the maximum number of gauche interactions between these electron pairs or polar bonds.The topomerization of CH2OH, i.e., the conformational transformation from one Y conformation into another, proceeds, via the W conformation as an intermediate, by two separate events, viz. rotation about the C—O bond, having a barrier of 10.58 kcal/mol, and pyramidal inversion at carbon, with a barrier of 20.52 kcal/mol. Some factors governing the relative importance of rotation and inversion in degenerate racemization are discussed.In its ground electronic state CH3O is 22.18 kcal/mol more stable than CH2OH. However, in the low-lying excited states all conformations of CH2OH are stabilized relative to CH3O. The most stable excited state structure of CH2OH corresponds to the energy maximum for rotation–inversion of the ground electronic state.

Publisher

Canadian Science Publishing

Subject

Organic Chemistry,General Chemistry,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3