Uniaxial strain derivatives of the Fermi surface of copper

Author:

Ruesink D. W.,Perz J. M.

Abstract

From a comprehensive experimental study of quantum oscillations in magnetostriction and torque, values have been deduced for all nonvanishing tetragonal and angular shear strain derivatives for the five principal extremal cross sections of the Fermi surface of copper, viz., the neck and belly normal to [111], the dogsbone normal to [110], and the rosette and belly normal to [001]. It is found that the neck is most sensitive to angular shear strain, whereas the bellies are most affected by uniform dilation. For the other orbits the magnitudes of shear and dilation derivatives are comparable.The results are self-consistent and agree with the experimental tensile stress results of Shoenberg and Watts. Earlier magnetostriction results for the neck obtained by Aron and by Slavin can be brought into agreement with the present data by recalculating the former using the now accepted value for the neck effective mass. The present experimental derivatives are in qualitative agreement with the theoretical values calculated by Lee, except for the tetragonal shear derivative of the [001] belly, for which the theoretical value is about 50% higher than the experimental one. This discrepancy is not fully understood.

Publisher

Canadian Science Publishing

Subject

General Physics and Astronomy

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Stress dependence of the Fermi surface of gold;Physical Review B;1993-12-15

2. Effect of strain on the Fermi surface of the noble metals;Physical Review B;1993-07-15

3. Uniaxial stress and strain derivatives of the Fermi-surface necks in gold;Canadian Journal of Physics;1987-01-01

4. Uniaxial stress dependence of the Fermi surface of Ru;Journal of Physics F: Metal Physics;1984-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3