Author:
Imanywoha Justus,Jensen Kevin B.,Hole David
Abstract
Six of the seven possible primary trisomics in Agropyron cristatum were produced. Based on morphology, arm length ratios, and C-banding patterns, they were identified as primary trisomics for chromosomes A, B, C, D, E, and G. Agropyron cristatum is one of several species constituting the crested wheatgrass complex. All species in this complex contain one basic genome (P). A study was conducted to produce and identify a primary trisomic series that will be used to map genes to individual chromosomes. A population of 157 plants were generated by crossing autotriploids (PPP) with diploid (PP) A. cristatum: 58 were diploid (2n = 14), 76 were primary trisomies (2n = 15), 17 were double trisomic (2n = 16), 4 were triple trisomics (2n = 14 + 3), 1 was telocentric trisomic (2n = 14 + 1 telo), and 1 was tetratrisomic (2n = 14 + 4). Karyotype analysis of acetoorcein-stained chromosomes was carried out using the CHROMPAC III computer program; for analysis of C-banded karyotypes, the computer imaging analysis program PCAS (Plant Chromosome Analysis System) was used to identify the primary trisomics. Of the 47 primary trisomics analyzed, 21 plants had one extra satellited chromosome E, 18 with the satellited D chromosome, 3 each for chromosomes B and G, and 1 each for chromosomes C and A. Chromosome pairing was studied in trisomies B, D, E, and G. Trisomics for chromosomes B and G were similar in their mieotic behavior. Each had a trivalent frequency of about 60% and pollen stainability of less than 40%. Trisomics for chromosomes D and E had a trivalent frequency of about 30% and pollen stainability of over 70%.Key words: trisomics, meiosis, hybridization, Agropyron cristatum, C-banding, karyotype.
Publisher
Canadian Science Publishing
Subject
Genetics,Molecular Biology,General Medicine,Biotechnology
Cited by
11 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献