Escherichia coliinitiator tRNA: structure–function relationships and interactions with the translational machinery

Author:

Mangroo Dev,Wu Xin-Qi,Rajbhandary Uttam L.

Abstract

We showed previously that the sequence and (or) structural elements important for specifying the many distinctive properties of Escherichia coli initiator tRNA are clustered in the acceptor stem and in the anticodon stem and loop. This paper briefly describes this and reviews the results of some recently published studies on the mutant initiator tRNAs generated during this work. First, we have studied the effect of overproduction of methionyl-tRNA transformylase (MTF) and initiation factors IF2 and IF3 on activity of mutant initiator tRNAs mat are defective at specific steps in the initiation pathway. Overproduction of MTF rescued specifically the activity of mutant tRNAs defective in formylation but not mutants defective in binding to the P site. Overproduction of IF2 increased me activity of all mutant tRNAs having the CUA anticodon but not of mutant tRNA having me GAC anticodon. Overproduction of IF3 had no effect on the activity of any of me mutant tRNAs tested. Second, for functional studies of mutant initiator tRNA in vivo, we used a CAU→CUA anticodon sequence mutant mat can initiate protein synthesis from UAG instead of AUG. In contrast with me wild-type initiator tRNA, the mutant initiator tRNA has a 2-methylthio-N6-isopentenyl adenosine (ms2i6A) base modification next to the anticodon. Interestingly, this base modification is now important for activity of the mutant tRNA in initiation. In a miaA strain of E. coli deficient in biosynthesis of ms2i6A, the mutant initiator tRNA is much less active in initiation. The defect is specifically in binding to the ribosomal P site.Key words: initiator tRNA, initiation Factors, formylation, P site binding, base modification.

Publisher

Canadian Science Publishing

Subject

Cell Biology,Molecular Biology,Biochemistry

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. The universally conserved nucleotides of the small subunit ribosomal RNAs;RNA;2022-02-03

2. The Ribosome as a Switchboard for Bacterial Stress Response;Frontiers in Microbiology;2021-01-08

3. Other CTMs and PTMs of Proteins;Co and Post-Translational Modifications of Therapeutic Antibodies and Proteins;2019-03-15

4. Initiation of mRNA translation in bacteria: structural and dynamic aspects;Cellular and Molecular Life Sciences;2015-08-11

5. Initiator t RNAs in Bacteria and Eukaryotes;eLS;2009-09-15

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3