Mechanical and hydraulic behaviour of a soft inorganic clay treated with lime

Author:

Locat Jacques,Trembaly Hélène,Leroueil Serge

Abstract

A comprehensive series of laboratory tests was conducted on an inorganic clayey sediment in order to predict the mechanical behaviour of dredged sediments used in reclamation projects. The soil used was a Louiseville clay, which was mixed with various quantities of lime (0–10%) and had a varied water content (122–650%). Tests were carried out with special large cells and standard oedometers to look at both the compressibility and the hydraulic conductivity. Once pozzolanic reactions are begun, for a given curing time, a linear relationship between preconsolidation pressure and lime concentration is observed. Compressibility results indicate that it is possible to define a separate compression curve for each lime concentration and curing time. Adding lime will influence the hydraulic conductivity both by flocculation and by the formation of secondary minerals. If only flocculation occurs, an increase in hydraulic conductivity follows. If enough lime is added, the resulting secondary minerals will create major changes in the micropore network and this will decrease the hydraulic conductivity by up to one order of magnitude. The development of a secondary micropore network along with the cementation of large flocs induce significant increases in both the liquid and plastic limits. This results in a significant increase in the water sorption potential and higher Atterberg limits. Key words: dredged sediments, compressibility, hydraulic conductivity, lime, stabilization, microstructure.

Publisher

Canadian Science Publishing

Subject

Civil and Structural Engineering,Geotechnical Engineering and Engineering Geology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3