The use of polymer supports in organic synthesis. XII. The total stereoselective synthesis of cis insect sex attractants on solid phases

Author:

Fyles Thomas M.,Leznoff Clifford C.,Weatherston John

Abstract

A 2% crosslinked divinylbenzene-styrene copolymer, incorporating trityl chloride groups (2) was used in the synthesis of insect sex attractants of Lepidoptera by a two-step alkyne coupling route. Polymer 2 reacted with the symmetrical diols, 1,8-octanediol and1,10-decanediol, to give the monoblocked polymer-bound diols 5 and 6 respectively. Mesylation of 5 and 6 gave the polymer-bound monomesylates 7 and 8 which on coupling with lithioacetylide gave the polymer-bound terminal alkynes 9 and 10 respectively. Acid cleavage of 9 and 10 provide 9-decyn-1-ol and 11-dodecyn-1-ol respectively. A second coupling step was performed by lithiation of 9 and 10 with n-butyllithium or tert-butyllithium followed by treatment with n-butyl bromide or ethyl bromide to give polymer-bound internal alkynes, which on acid hydrolysis gave 9-tetradecyn-1-ol (22), 11-hexadecyn-1-ol (23), and 11-tetradecyn-1-ol (24). If 10 had been lithiated with n-butyllithium and coupled with ethyl bromide, some translithiation occurred to liberate n-butyl bromide which entered into the coupling reaction eventually giving a mixture of 23 and 24. This problem was resolved by the use of tert-butyllithium in the lithiation step. Attempts were made to reduce polymer-bound internal alkynes stereoselectively to cis-alkenes with 9-borabicyclononane, diisobutylaluminum hydride, and catechol borane but all these reagents proved inadequate due to incomplete reduction, overreduction, hydrogenolysis of the alkyne from the polymer, and non-selectivity. Polymer-bound internal alkynes were quantitatively reduced exclusively to cis insect sex attractants using disiamylborane without concurrent overreduction or hydrogenolysis.

Publisher

Canadian Science Publishing

Subject

Organic Chemistry,General Chemistry,Catalysis

Cited by 33 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3