Affiliation:
1. Department of Plant Sciences, University of Saskatchewan, Saskatoon, SK S7N 5A8, Canada.
2. Department of Soil Science, University of Saskatchewan, Saskatoon, SK S7N 5A8, Canada.
Abstract
Cover crops have the potential to immobilize nitrogen (N) that would otherwise be lost before or after the main crop production, leading to improved N management. However, information on how cover crops influence N management in intensive vegetable cropping systems is scarce. This study aimed to determine how an overwintering rye cover crop impacts crop yield and N cycling, for three common prairie vegetable crops. From 2017 to 2019, a broccoli – sweet corn – root crop sequence was tested (in which all crops of rotation were present each year), with each crop type receiving five N fertilizer treatments, ranging from 0 to 300 kg N·ha−1. After harvest each year, sub-plots were established with vs. without a rye cover crop, and the effect on vegetable yield, soil inorganic N, and N use efficiency (NUE) was followed into the subsequent growing season. In most cases, the cover crop increased vegetable crop productivity and N content in the subsequent growing season. The cover crop also lowered soil inorganic N levels at vegetable planting but increased levels at harvest. Vegetable crop NUE indices were frequently improved with vs. without the cover crop. As for the N fertilizer response, increasing N fertilizer rate did not continually increase vegetable crop productivity and N content. Higher N fertilizer rates increased soil inorganic N levels at vegetable planting and harvest, and often lowered vegetable crop NUE indices. These results demonstrate the importance of adjusting soil N levels to better align with crop needs — and that including a rye cover crop in the vegetable rotation is one method of doing so.
Publisher
Canadian Science Publishing
Subject
Horticulture,Plant Science,Agronomy and Crop Science
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献