Evaluation of spring-type and winter-type Brassica napus germplasm for genetic diversity in response to flea beetle herbivory in typical and atypical planting windows

Author:

Heath Julian12,Kott Laima3,Yoosefzadeh Najafabadi Mohsen3ORCID,Rajcan Istvan3ORCID

Affiliation:

1. Corteva Agriscience, Saskatoon, SK S7K 3J9, Canada

2. Yield10 Oilseeds Inc., Saskatoon, SK S7N 0W9, Canada

3. Department of Plant Agriculture, University of Guelph, Guelph, ON N1G 2W1, Canada

Abstract

Current practices of flea beetle ( Phyllotreta spp.) control in Brassica napus L. rely heavily on seed treatments and due to growing concerns regarding the safety of such treatments on non-target and beneficial insect populations, genetic resistance would be beneficial for a more balanced integrated pest management strategy. However, none of the registered B. napus. canola varieties exhibit measurable resistance to flea beetle injury. To this end, an evaluation of 14 winter-type B. napus breeding lines and 15 spring-type B. napus breeding lines for resistance to flea beetle feedings was conducted, as it was found that at least one line in each family exhibited noticeably reduced flea beetle damage compared to sister lines in a breeding nursery. The study revealed natural genetic variation within B. napus for flea beetle antixenosis which could be used by dedicated breeders to develop canola varieties with higher levels of flea beetle resistance. Data indicated that host plant resistance did not vary between feeding by newly emerged adult flea beetles in the fall and the overwintered adults in the spring in either winter-type or spring-type canola, as well as for adult feeding preferences. This indicates that favourable genes identified in in either habitat-type could be used interchangeably to confer resistance even though the flea beetle life cycle is different for each planting period, while either overwintered adults or newly emerged adults can be used to evaluate feeding damage.

Funder

Corteva Agriscience

Publisher

Canadian Science Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3